If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6k^2-19k+8=8
We move all terms to the left:
6k^2-19k+8-(8)=0
We add all the numbers together, and all the variables
6k^2-19k=0
a = 6; b = -19; c = 0;
Δ = b2-4ac
Δ = -192-4·6·0
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-19}{2*6}=\frac{0}{12} =0 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+19}{2*6}=\frac{38}{12} =3+1/6 $
| x/12+1.5+x/2.5=3 | | x-12=10-x | | 6(x+3)=-3(x+1)-6 | | 5(2a+16)=3-a | | y-98=177 | | 6x=-59 | | -3+3y+7=6y+21 | | -1/3x+12=-10 | | 8x-11=29-x | | 2/7x+4/7x=-6/7 | | x•5-3=x+5•3 | | x+7.45=13 | | 3x^2+4x-5(2x+9)=0 | | x+18.3=20.7 | | 80=q/4+72 | | x•5-3=(x+5)•3 | | 3(1-7m)=3-9(2m+7)-3m | | 98=z+57 | | -y+279=53 | | 2n+12+n=24 | | 3/4i-5/6=2/3i | | 1/4x-13=-20 | | 14=b+12 | | 10(k+3)-(-9k-4)=k-2 | | x-3.8=12 | | 382x+125=x+163 | | 2x+3/3-3x-4/7=3 | | 7(2x+3)-5=3(x+1)+6 | | 278=-v+101 | | 3(4-5r)=4r-9(5+2r) | | 14x=3x-7 | | 35+5x=40x |